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Abstract—We propose a new approach for image segmentation
based on a hierarchical and spatially variant mixture model. Ac-
cording to this model, the pixel labels are random variables and
a smoothness prior is imposed on them. The main novelty of this
work is a new family of smoothness priors for the label proba-
bilities in spatially variant mixture models. These Gauss–Markov
random field-based priors allow all their parameters to be esti-
mated in closed form via the maximum a posteriori (MAP) estima-
tion using the expectation-maximization methodology. Thus, it is
possible to introduce priors with multiple parameters that adapt to
different aspects of the data. Numerical experiments are presented
where the proposed MAP algorithms were tested in various image
segmentation scenarios. These experiments demonstrate that the
proposed segmentation scheme compares favorably to both stan-
dard and previous spatially constrained mixture model-based seg-
mentation.

Index Terms—Clustering-based image segmentation, expecta-
tion-maximization (EM) algorithm, Gauss–Markov random field,
Gaussian mixture model, maximum a posteriori (MAP) estimation,
spatial smoothness constraints.

I. INTRODUCTION

IMAGE segmentation is the process of grouping image pixels
based on the coherence of certain attributes such as inten-

sity, color, or texture. Many approaches have been proposed to
solve the image segmentation problem. For surveys of this topic,
the reader may refer to [1] and [2]. In this paper, we will focus
our attention to image segmentation methods based on clus-
tering. Clustering is the process of arranging data into groups
having common characteristics and is a fundamental problem
in many fields of science [3], [4]. Thus, image segmentation
can be viewed as a special type of clustering. Usually, in image
segmentation, our data, the image pixels, have spatial locations
associated with them. Thus, apart from the commonality of at-
tributes such as intensity, color, or texture, commonality of lo-
cation is an important characteristic of the grouping that we are
seeking in image segmentation.

More specifically, in this paper, we will focus our attention
on clustering methods based on the modeling of the probability
density function (pdf) of the data via finite mixture models
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(FMM) [5]–[7]. Modeling the pdf of data with FMM is a
natural way to cluster data because it automatically provides a
grouping of the databased on the components of the mixture
that generated them. More specifically, FMM are based on the
assumption that each datum originates from one component of
the mixture according to some probability. Thus, this proba-
bility can be used to be assign each datum to the component
that has most likely generated it. Furthermore, the likelihood of
an FMM is a rigorous measure for the clustering performance
[7]. FMM-based pdf modeling has been used successfully in
a number of applications ranging from bioinformatics [8] to
image retrieval [9].

The parameters of the FMM model with Gaussian compo-
nents can be estimated very efficiently through maximum likeli-
hood (ML) using the expectation-maximization (EM) algorithm
[5], [7], [10]. Furthermore, it can be shown that Gaussian com-
ponents allow efficient representation of any pdf. Thus, mixture
models with Gaussian components, in other words Gaussian
mixture models (GMM), are the ones used in most applications
[7].

In mixture model-based image segmentation, the image
pixels are considered independent; thus, it is straightforward
to use a GMM and ML for this problem. In [11], the perfor-
mance of different algorithms that estimate GMMs for image
segmentation was evaluated. A drawback of the ML approach
for this application is that commonality of location is not taken
into account when grouping the data. In other words, the prior
knowledge that adjacent pixels most likely belong to the same
cluster is not used.

To overcome this shortcoming, several approaches were pro-
posed. Local Bayesian segmentation methods with a compar-
ison of mixture estimation algorithms are investigated in [12].
A Markov random field (MRF) approach was proposed in [13].
Caillol et al. [14] introduced fuzziness in Gaussian mixtures and
modeled spatial information in both the segmentation and pa-
rameter estimation levels.

The spatially variant finite mixture model (SVFMM) was pro-
posed [15]. The SVFMM considers the pixel labels as random
variables instead of parameters as the “classical” EM-ML for-
mulation. It assumes a MRF prior on the data. A maximun a
posteriori (MAP) estimation using a Gibbs MRF-based prior for
the pixel labels is used [15]. This prior enforces spatial smooth-
ness of the pixel labels, and generates clusters that are spatially
continuous. Based on this model, a number of approaches have
been proposed for various applications [16], [17].

The MAP algorithm proposed in [15] cannot find the pixel la-
bels in closed form and used a gradient projection algorithm. In
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[18], the problem of computing the pixel labels for the SVFMM
was improved using quadratic programming. This was shown
to produce both better segmentations and values of the criterion
function. In this paper, we build upon the SVFMM framework
rather than the works in [16] and [17].

The main shortcoming of SVFMM in [15] and [18] is the use
of a smoothness prior which is rather inflexible and does not
adapt to the data. This is a consequence of the fact that it uses
only one parameter that cannot be estimated automatically from
the image. Our experience with this method indicates that ap-
propriate values for this parameter can be found. However, they
require a tedious trial-and-error process. This clearly makes in-
corporation of more than one such parameter in the prior pro-
hibitive. In this paper, this difficulty is bypassed since the new
prior that we propose allows estimation of all its parameters in
closed form the data. Thus, the introduction of priors that can
adapt to different aspects of the data is possible. Herein, we use
priors that are cluster and directionally adaptive and all their pa-
rameters are automatically estimated from the image. We also
demonstrate via numerical experiments for image segmentation
problems with both single and multidimensional feature vectors
that the proposed priors improve the segmentation performance
of the SVFMM.

In what follows, background for SVFMM is given in Sec-
tion II. The proposed priors are presented in Section III. In Sec-
tion IV, the proposed MAP algorithm is presented. Numerical
experiments are presented in Section V and finally conclusions
and directions for future research are given in Section VI.

II. BACKGROUND

Let denote the vector of features rep-
resenting spatial location (pixel), ( ), of an -di-
mensional image modeled as independently distributed random
variables. Here, is the number of features per pixel (e.g., in-
tensity, textural features, location, etc.). The SVFMM [15] pro-
vides a modification of the classical FMM approach [7], [5] for
pixel labeling. It assumes a mixture model with components
each one having a vector of parameters defining the density
function.

Pixel is characterized by its probability vector
, where is the number of components. We

define as the set of probability
vectors and the set of component pa-
rameters. The variables represent the probabilities of the
pixel to belong to the cluster (or class) and must satisfy the
constraints

(1)

The FMM assumes that the pdf of an observation is expressed
by

(2)

where is a Gaussian distribution with parameters
, where is the mean

vector and is the covariance matrix of the -dimensional
Gaussian distribution. This notation implies that are consid-
ered as random variables and as parameters. In this study, we
have considered a diagonal covariance matrix ,
with for each class . The SVFMM in [18] uses a
prior density based on the Gibbs distribution for the random
variables given by

(3)

with

(4)

where is a normalizing constant called “Partition Function,”
is the prior parameter that controls the degree to which smooth-
ness is imposed. This parameter is analogous to the regular-
ization parameter used to impose smoothness in ill-posed in-
verse problems, see for example [19]. The function de-
notes the clique potential function of the pixel label vectors
within the neighborhood . In the general case, this function
has the form

where specifies the distance between two label vectors

and

and the neighborhood is the set of adjacent pixels to pixel
. A choice for the monotonically increasing and non-negative

penalty function is

(5)

which is robust to outliers [20]. The value of the partition func-
tion in general depends on . However, this relationship is
unknown unless the penalty function has a very simple form
[21], [22]. For many penalty functions including the one in (5),
this relation is unknown.

Therefore, denoting the set of pixels , with
, which we assume to be statistically inde-

pendent and following Bayes rules, we obtain the posterior pdf
given by

(6)

with the log density

(7)

The EM algorithm [10] for MAP estimation, based on the
SVFMM [15], requires the computation of the conditional ex-
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pectation values of the “hidden” variables at the E-step of itera-
tion step

(8)

In the M-step, the expected log-likelihood of the complete data
is used [10]. This log-likelihood for mixture models is well
known [5], [7] and is linear in the “hidden” variables. The de-
tails of the derivation of this log-likelihood for the SVFMM can
be found in [15]. The maximization of

(9)

corresponding to the complete data log-likelihood, yields the
model parameters. The function in (9) can be maximized
independently for each parameter with the following update
equations of the mixture model parameters at step

(10)

Several methods have been proposed to compute the contextual
mixing proportions of each normal density. A generalized
EM scheme, based on the gradient projection algorithm was
used in [15]. In [18], an approach based on quadratic program-
ming was proposed. This approach was shown to improve both
the criterion function (9) and the classification of the SVFMM.

III. NEW PRIOR FOR THE PIXEL LABELS

As already mentioned, the main drawbacks of the SVFMM
[15], [18] are that one parameter, the scalar in (9) is used to
capture the smoothness of all the clusters and in all directions.
Furthermore, the value of this parameter cannot be estimated
from the data in an easy way. This stems from the fact that for
penalties of the form of (5) the relationship of the partition func-
tion and is difficult to find. If the penalty function is quadratic
this relationship is known and closed-form estimates of from
the data are easily obtained.

Motivated by the above we consider a Gauss–Markov random
field prior probability for in (7) which is given by

(11)

where is the neighborhood for the pixel.

The statistical assumptions used in this prior can be clearly
explained if the predictor of the label is defined by the mean
of its spatial neighbors as

(12)

where is the number of pixels in the neighborhood, and the
prediction error

(13)

This prior is based on the assumption that
. In other words, the prediction errors of the labels,

for all spatial locations and all clusters are independent iden-
tically distributed Gaussian random variables with zero mean
and variance .

Obviously, the prior in (11) is based on a simplistic assump-
tion and does not capture the fact that the statistics of each
cluster might be different. To capture this property one can use
a distinct variance for each cluster. Then, the prior is given
by

(14)

In this prior, the parameter captures the spatial smoothness
of cluster . Thus, this prior can enforce smoothness of different
degree in each cluster and adapts better to the data.

Moreover, this prior can be further refined by allowing
smoothness that varies both within cluster and along different
spatial directions. In other words, parameters can be used
to express not only the class variance for cluster but also the
variance within cluster at a certain spatial direction (e.g.,
horizontal, vertical, and diagonal pixel variances). In that case,
the prior is given by

(15)

where is the total number of the considered directions (gener-
ally 4), is the variance of class only considered for pixels
having adjacency type and , is the neighbor-
hood of the pixel in direction . In the general case,
directions (horizontal, vertical and 2 diagonal directions).

This prior can be also explained in a similar fashion as the one
in (11). One can define in the same manner as in (12) and (13)
directional predictors and prediction error for each one of the
data clusters. Then, this prior assumes that the prediction
errors for each direction and cluster are independent and iden-
tically distributed for each pixel Gaussian random variables. In
other words, we have where

the number of pixels in neighborhood . Priors of this nature
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have been applied successfully for images (pixel values) to reg-
ularize various ill-posed inverse problems in order to generate
smooth image estimates from noisy observations. Priors of this
nature are called simultaneously autoregressive (SAR) (see [19]
and [23]–[25]). In this paper, we adopt such priors by applying
them to the pixel labels for SVFMM-based image segmentation.

IV. MAP ESTIMATION

Using the previously proposed priors, one can derive the cor-
responding MAP algorithms using the EM methodology is a
similar manner as in [15] and [18]. Since the only difference
from the previous SVFMM are the priors, all parameters of the
SVFMM model except the pixel labels and the parameters of
priors are identically computed. Since the priors in (11) and (14)
can be considered as special cases of the prior in (15), we will
derive only the MAP algorithm for latter. The prior in (15) yields
the following MAP function to be maximized for the M-step of
the EM algorithm [see (16), shown at the bottom of the page].

To compute the model parameters and at time
step of the EM algorithm, we have to maximize (16)
with respect to or to compute its partial derivative and set the
result to zero. Notice that we have to take into consideration that
every in the summation term occurs

once as the probability of the central pixel and times as a
neighbor of different pixels if a first order neighborhood is
used. Thus, gives a second degree equation with

respect to

(17)

for and , expressing the probability
of the pixel to belong to the class at time . By
setting

(18)

which is the sum of all combinations of products between ,
for , when a specific , for is
excluded from the product, (17) becomes

(19)

The solution of (19) for at time step of the EM algo-
rithm is shown in (20), at the bottom of the page.

Also, the solution for the class variances are obtained by set-
ting and solving for at time step

(21)

for and . Analogous are the log
likelihoods to be maximized for the models involving the priors
in (11) and (14).

In the standard EM algorithm, the neighborhood in ex-
pressions (20) and (21), for the computation of the parameters
at time step , includes pixels with label parameter vectors
computed at time . In our experiments, we have noticed that if
pixels with updated label parameter vectors (computed for time

), as well as pixels whose label vectors have not yet been
updated (computed at time ) are combined then the algorithm
converges faster. However, there is no theoretical proof neither
for the speed-up of the algorithm nor for the convergence itself.

(16)

(20)
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Fig. 1. (a) Three-class test image used in the experiments described in the text.
Intensity means are 30, 125, and 220. The contextual mixing proportions are
0.37, 0.30, and 0.33, respectively. (b) The image in (a) is degraded by zero-mean
white Gaussian noise with SNR = 1:0. (c) Segmentation of the image in (a)
combining intensity and location features. Each pixel is represented by a 3-D
vector whose components are the pixel intensity and the two image coordinates.
The segmentation algorithm is the standard FMM without spatial prior.

The overall EM algorithm may be summarized as follows.

• Initialize the mixture model component parameters
, and the contextual mixing

proportion vectors for each pixel .

• Do until the MAP functional (16) does not change
significantly.

– E-step

* Calculate the posterior probabilities for the pixel
to belong to the class (8).

– M-step

* Calculate the new mixture model parameters (10).

* Calculate the new contextual mixing proportions (20).

* Project the contextual mixing proportions onto the constraints
(1) using the quadratic programming algorithm in [18].

* Calculate the class variances (21).

• End

V. NUMERICAL EXPERIMENTS

The performance of the proposed approach is illustrated with
a number of numerical examples. Since the EM algorithm is sen-
sitive to initialization, we have executed a number of iterations
of the EM algorithm with a set of randomly generated initial
conditions and kept the one giving the maximum value for the
log-likelihood. The termination criterion of the EM algorithm,
considered here, was convergence defined as the percentage of
change in the log likelihood (16) between two consecutive iter-
ations to be less than 0.001%, or .

We present comparisons for image segmentation between the
standard FMM [6], the spatially variant finite mixture model
(SVFMM) [15] improved by the quadratic optimization method
we proposed in [18], and the herein proposed directional class-
adaptive spatially variant finite mixture model (DCA-SVFMM).
We also present the comparisons of the intermediate versions of
our final prior model: the adaptive spatially variant finite mix-
ture model (A-SVFMM) having only one global variance for the

Fig. 2. Three-class segmentation of the image presented in Fig. 1(b) using
(a) SVFMM, (b) A-SVFMM, (c) CA-SVFMM, and (d) DCA-SVFMM.

prior distribution (11) and the class-adaptive spatially variant fi-
nite mixture model (CA-SVFMM) (14) having one variance per
cluster (14). In all our experiments, we used an eight-closest-
pixels neighborhood system for and a one neighbor system
for the directional system . Results on piece-wise constant,
color and textured images are presented. Furthermore, the pro-
posed algorithm was tested on the Berkeley image segmentation
database [26].

A. Piece-Wise Constant Image Segmentation

Fig. 1(a) shows a simulated three-class image with intensities
for the three classes 30, 125, and 220. The contextual mixing
proportions are 0.37, 0.30, and 0.33, respectively. Fig. 1(b)
shows the same image corrupted by zero mean white Gaussian
noise. Because image contrast is what we are most interested in
for quantifying the segmentation, we define the signal-to-noise
ratio (SNR) as [16]

SNR
mean interclass contrast

standard deviation of the noise

Thus, for the image in Fig. 1(b) we have SNR .
We also define the measure of correct classification ratio

(CCR)

CCR (22)

where is the ground truth for the cluster, de-
scribes the pixels the algorithm classified to cluster and

.
Fig. 2 shows the segmentation of the corrupted image in

Fig. 1(b) obtained by the SVFMM Fig. 2(a) with a fixed
regularization parameter and the variants of our approach: the
A-SVFMM Fig. 2(b), the CA-SVFMM Fig. 2(c), and the the
DCA-SVFMM Fig. 2(d). The best results are obtained with
the final refinement of our model, with the consideration of
neighborhood directions jointly with the class adaptive prior.
Table I presents the percentage of correctly classified pixels
(CCR metric) for the different methods. Finally, the robustness
of our approach is illustrated in Table II, where the statistics of
the CCR measure for 30 realizations of the noise configuration
are shown.

In order to demonstrate the limits of location-based features
in image segmentation and support the use of a spatially variant
mixture model we present the segmentation of the image in
Fig. 1(a) using location as a feature. Each pixel is represented by
a 3-D vector whose components are the pixel intensity and the
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TABLE I
PERCENTAGE OF CORRECTLY CLASSIFIED PIXELS (CCR) FOR THE

SEGMENTATION OF THE DEGRADED IMAGE IN FIG. 1

TABLE II
STATISTICAL BEHAVIOR OF THE CCR. THE EXPERIMENT PRESENTED IN

TABLE I WAS REPEATED 30 TIMES WITH DIFFERENT REALIZATIONS OF

THE NOISE. THE MEDIAN, MEAN, AND STANDARD DEVIATION OF

THE CCR FOR THE DCA-SVFMM IS PRESENTED

TABLE III
PERCENTAGE OF CORRECTLY CLASSIFIED PIXELS FOR THE SEGMENTATION

OF DEGRADED VERSIONS OF THE IMAGE IN FIG. 1 WITH DECREASED

INTERCLUSTER CONTRAST. THE ORIGINAL VALUES OF THE CLUSTER

MEANS ARE � = 110, � = 130, AND � = 150

two image coordinates. The image was segmented by the stan-
dard FMM algorithm without any prior assumption on spatial
variations. As can be seen in Fig. 1(c), location-based features
have the tendency to produce clusters with erroneous spatial ar-
rangements because they assign the same weight to image in-
tensity and coordinates.

In a second experiment, we evaluate our method in a more
difficult configuration. We have modified the values of the orig-
inal image (Fig. 1) in order to decrease the interclass distances.
We have fixed the three classes to gray levels of 110, 130, and
150, respectively, and added white Gaussian noise to the image.
Thus, we have obtained images with signal to noise ratios of
2.0 and 1.0. We then applied our algorithm to those images and
compared the segmentation results with respect to the perfor-
mance of the SVFMM. The results are summarized in Table III,
where the superior performance of our method is underpinned.

A last experiment was conducted in order to illustrate how the
variance of the noise affects the intraclass variances of the priors
for the pixel probability labels , 1, 2, 3. We have corrupted
the three regions of the image in Fig. 1 with different amounts
of noise and applied the class-adaptive segmentation algorithm
which implies one variance per cluster (CA-SVFMM). The re-
sults are presented in Table IV. Looking at such results, one has
to keep in mind that parameters do not refer directly to the
noise in the observations but to the probability of the pixel be-
longing to the respective cluster taking into account its neigh-
bors. However, we observe that parameters may vary across

different clusters by orders of magnitude. This demonstrates the
ability of the model to adapt to the data.

B. Application to Texture Segmentation

We have also evaluated and compared the proposed algo-
rithms for the segmentation of multidimensional images. This
type of images may be obtained directly from sensors, such as
multispectral satellite images or RGB color television images.
Also, they may be created through preprocessing in order to ex-
tract significant features characterizing the image content (e.g.,
textural features). Here, we present an example from both cases.

A first experiment concerns the segmentation of a textured
image. Fig. 3(a) shows a composite image of 4 natural textures
from the Brodatz collection [27]. We have degraded the tex-
tured image with Gaussian noise in order to make segmentation
more challenging and obtained two different images of SNR of
1.0 and 0.5, respectively [Fig. 3(b)–(c)]. We have extracted tex-
tural features using a filter bank of 40 bandpass Gabor filters
for eight equally spaced angles and five different radial lengths
[28]. Eight features were used for segmentation. These features
were created by selecting eight from the available 40 Gabor filter
responses and then processed them as in [29]. This approach
has been also successfully evaluated for texture segmentation in
[30]. For segmentation with multidimensional features, we used
a diagonal covariance matrix for the mixture of the Gaussian dis-
tributions.

The segmentation results for the degraded textured images are
summarized in Table V, where the CCR percentage is presented
for each method. Also, Fig. 4 shows that the DCA-SVFMM ap-
proach performs very well even in the presence of significant
amount of noise. Notice how the cross-like separation is pre-
served in Fig. 4(d), which is not the case in Fig. 4(b).

C. Application to RGB Image Segmentation

Moreover, we have experimented on the segmentation of
RGB natural images. Fig. 5(a) shows a color image. The image
consists mainly of three color components: the white church
wall, the red cupola, and the dark blue sky. Other red and dark
blue regions are also present (mainly on the windows). We
have added to the image zero mean white Gaussian noise with
different standard deviation for each color component leading
to SNRs of 2, 4, and 3 dB for the R, G, and B components,
respectively. The degraded image is shown in Fig. 5(d). At first,
we applied the segmentation algorithms to the noise-free image
in order to obtain a baseline of their behavior. As depicted in
Fig. 5(b)–(c), the DCA-SVFMM method segments better the
red component by preserving the sharp edge between the cupola
and the sky. Furthermore, the bottom right red window is more
accurately extracted by our method. Also, we can observe
that the narrow shadows on the wall right at the bottom of the
cupola are slightly better preserved by the SVFMM. However,
this was obtained after manual tuning of the parameter of the
Gibbs distribution (4) as mentioned at the end of the section.

The results for the degraded images are presented in
Fig. 5(e)–(f). Due to absence of ground truth, the evaluation of
the segmentation is only qualitative. As in the single-dimen-
sional case, our new method provides a better segmentation,
especially in the red component which underwent the most
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TABLE IV
MEAN AND STANDARD DEVIATION FOR EACH CLUSTER ESTIMATED BY THE CA-SVFMM FOR THE THREE-CLASS SEGMENTATION OF IMAGE OF FIG. 1 WHEN

A DIFFERENT AMOUNT OF NOISE IS ADDED TO EACH CLASS. THE VALUES OF THE ESTIMATED CLASS VARIANCES � , j = 1, 2, 3 OF THE CONTEXTUAL

MIXING PROPORTIONS ARE ALSO PRESENTED. THE CCR WAS 97%. THE ORIGINAL VALUES OF THE CLUSTER MEANS ARE � = 30, � = 125,
AND � = 220 AND THE IMAGE WAS DEGRADED WITH NOISE VARIANCES OF 30, 60, AND 90, RESPECTIVELY

Fig. 3. (a) Composite four-texture image and its noisy versions with (b) SNR =

1 and (c) SNR = 0:5.

TABLE V
PERCENTAGE OF CORRECTLY CLASSIFIED PIXELS FOR THE SEGMENTATION

OF THE DEGRADED IMAGES OF FIG. 3

Fig. 4. Four-class segmentation of the images presented in Fig. 3(b)–(c) by
applying the (a)–(b) SVFMM and (c)–(d) DCA-SVFMM methods to the dyadic
Gabor filter bank responses of the original images.

significant degradation. In the case of the SVFMM, many
pixels of the cupola were classified as sky or wall which is not
the case for the DCA-SVFMM approach.

An interesting property of the proposed prior is that it can
take into account intracluster statistics. For the segmentation
problem, this property seems interesting and eventually well
suited to take into account, to a certain extent, the so-called
shading effect sometimes found in real world images (e.g.,
regions with globally smooth shading variations, gradually
changing color, such as sky, lake, wall, etc.). This is the case
at the top of the red copula where we can observe reflections,
as well as at the wall where the color is not constantly white
due to shadows Fig. 5(a). This effect generally induces inap-
propriate and undesirable over-segmentation which is not the
case here. The directional and class adaptive parameters
are summarized in Table VI, which illustrates that these effects

Fig. 5. (a) Color image and its three-class segmentation by (b) the SVFMM
and (c) the DCA-SVFMM. (d) The original image degraded by zero-mean white
Gaussian noise with different standard deviation for each component. The cor-
responding SNR are 2, 4, and 3 dB for the R, G, and B components, respectively.
Segmentation of the degraded image into three classes by (e) the SVFMM and
the (f) the DCA-SVFMM.

TABLE VI
PARAMETERS � , j = 1, 2, 3, d = 0 , 45 , 90 , 135 FOR THE

SEGMENTATION OF THE NOISE FREE IMAGE IN FIG.5(a) BY THE DCA-SVFMM

were taken into account by assigning relatively larger variances
to these regions.

We have to notice that in all of the experiments, in the case
of the SVFMM algorithm, we have presented the results for the
best regularization parameter of the Gibbs distribution (4).
This parameter was obtained after a tedious search performed
heuristically since there is no trivial method to estimate this pa-
rameter from the data for this model. More precisely, the best
parameter varies between 2.1 and 2.5 for the three-class im-
ages and between 1.8 and 2.2 for the four-class (textured im-
ages) and five-class cases. In contrast, for the herein proposed
approach, all the parameters of the prior are estimated automat-
ically from the data and this is one of the main strengths of our
approach.

Finally, it is important to bring to notice the faster conver-
gence of the proposed approach as compared to SVFMM in
[15], [18]. The different variants of our model required approx-
imately 10–30 iterations as compared to the previous SVFMM,
that required over 100 iterations for convergence.
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Fig. 6. Image segmentation results from the Berkeley segmentation database [26]. The first column presents the original color images and the rest of the columns
present the segmentation maps of our CA-SVFMM method along with the predetermined number of clustersK and the PR index for each case.

D. Evaluation With the Berkeley Image Segmentation
Database

Finally, we have compared the results of our algorithm to
the manual segmentations provided by the Berkeley image
segmentation database [26]. This benchmark consists of a set of
images along with their ground truth segmentation maps which
were provided by different individuals. The evaluation of a seg-
mentation algorithm when multiple ground truths are available
is a nontrivial task. However, a probabilistic evaluation can be
achieved by the probabilistic Rand (PR) index [31]. This index
was conceived for the case of hard segmentation maps and
was used in [32] for the comparisons of segmentations of the
Berkeley database.

The PR index, between a segmentation map
to be evaluated and a set of ground truth images

is given by

(23)
where if pixels and belong to the same cluster
and if pixels and belong to different clusters. The
normalization term is the inverse of the number of all possible
unordered pairs of pixels and is the ground truth proba-
bility that pixels and belong to the same cluster, computed as

the mean pixel pair relationship among all the ground truth im-
ages. The term relationship implies a binary value true or false
meaning that the pixels of the pair belong or not to the same
cluster.

The PR index takes values between 0 and 1. A score of 0 indi-
cates that every pixel pair in the machine segmentation has the
opposite relationship as every pair in the ground truth segmen-
tations while a score of 1 indicates that every pixel pair in the
machine segmentation has the same relationship as every pair in
the ground truth images. If two pixels are in the same region in
most of the ground truth images, they are penalized accordingly
for not being in the same region in the machine segmentation
and vice versa. As a consequence, the PR index is robust to seg-
mentation maps that result by splitting or merging segments of
the ground truth which is a desirable property [33].

The CA-SVFMM algorithm was applied to a set of 30 color
images of the Berkeley segmentation database with several con-
figurations for the number of clusters (parameter ) for each
image. We have chosen both textured and nontextured images
in order to evaluate the algorithm. The PR indices for a subset of
the data with the value of parameter that provided the max-
imum index is presented in Table VII. For comparison purposes,
we present, in the same table, for the same parameter , the PR
index for the SVFMM algorithm [18], with which is
a good compromise according to the performed experiments. In
all cases, the proposed class-adaptive algorithmic approach out-
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TABLE VII
MAXIMUM PR INDEX AND THE CORRESPONDING NUMBER OF CLUSTERS FOR

30 IMAGES OF THE BERKELEY SEGMENTATION DATABASE [26] WHEN THE

CA-SVFMM ALGORITHM IS APPLIED. FOR COMPARISON PURPOSES,
THE PR INDEX FOR THE SVFMM ALGORITHM, WITH � = 2:0,

FOR THE SAME PARAMETER K IS PRESENTED

performs the standard SVFMM algorithm. Some segmentation
examples from the application of CA-SVFMM to images of the
Berkeley database, including the segmentation maps with the
best , are shown in Fig. 6.

VI. CONCLUSION AND FUTURE WORK

We have presented a hierarchical and spatially constrained
mixture model for image segmentation. This model takes into
account spatial information by imposing distinct smoothness
priors on the probabilities of each cluster and pixel neighbor-
hoods. Experimental results have shown that our approach im-
proves significantly not only standard FMM segmentation but
also its spatially variant version. Moreover, the number of itera-
tions of the EM algorithm is reduced significantly compared to
the SVFMM [15], [18].

Important open questions for FMM-based clustering are how
the number of model components can be selected automati-
cally and which features (in the multidimensional case) should
be used. These questions are still the subject of on going re-
search [34]–[36]. For FMM-based image segmentation, these
questions are also very important for certain segmentation sce-
narios. For example, in texture segmentation selecting, the ap-
propriate subset of responses from the Gabor filter bank is an im-
portant question. However, the use of smoothness priors makes

the FMM even more complex. Thus, addressing such questions
is out of the scope of this paper and subject of future research.
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